WALKTHROUGH REFERENCE SHEET **Sieso** Connection

Tips for the walkthrough

- Enter workstations cautiously, showing respect for workers and letting them lead the way
- Uncover possible root causes by using the "5 whys" technique
- Ask permission before taking photos during the walkthrough
- Observe general patterns and specific equipment behaviours
- Ask questions about standard procedures and about anything that seems unusual or out of the ordinary
- Record each opportunity in the opportunity tracking sheet
- Include details like location, equipment (e.g., horsepower, wattage, run-time), set points, schedules and any overrides
- ▲ Flag any missing or unclear data for follow-up
- Thank staff who took time to answer questions or provide insight

• Wear re

Safety reminders

- Wear required PPE at all times
- Stay in designated walkways
- · Do not write notes while walking
- Do not touch equipment unless authorized
- · Follow all site instructions

Examples of questions to ask

- What time does the equipment need to start to meet production?
- What are the minimum / maximum setpoint requirements of the system or piece of equipment?
- What equipment can we turn off at breaks, lunch or between shifts?
- What time can we turn the equipment off after production?
- Is there wasted energy that can be recovered or reused?
- What is the overall system requirement? (e.g. operate 1 piece of equipment at 80% or 2 at 40%?)
- Have there been any complaints about the equipment or facility conditions?

TYPES OF WASTE AND EXAMPLES Pieso Connecting Today. (INDUSTRIAL)

Type of waste	Examples	What are the opportunities
Unnecessary running or idling	Conveyors or motors running while lines are down Lights left on in unused production zones	Turn off or dial back equipment during non-active time
Leaks	Leaks in compressed air linesSteam escaping from valvesWater leaks near cooling systems	Repair or prevent leaks in compressed air, steam, water lines, or building envelope
Friction loss	 Fouled heat exchangers Pinched hoses Worn belts or bearings increasing motor load 	Clean and maintain filters, ducts and heat exchangers Check for pipe or hose restrictions or worn mechanical components
Sub-optimal efficiency	 Oversized motors Outdated machinery Systems not tuned for current load or conditions 	Replace existing equipment with higher- efficiency models Match system capacity to actual demand Optimize operating setpoints
Malfunctions	 Broken actuators Valves stuck open Sensors feeding false readings to control systems 	 Repair broken actuators, switches and valves Regularly calibrate control systems Maintain preventive maintenance schedules
System imbalance	 Equipment fighting each other, such as one heating while another cools Excessive cycling due to bad controls 	Ensure set points are properly set and adjusted for new conditions Check for overrides and manual modes
Misapplication	 Using compressed air instead of mechanical tools Applying high-speed tools to low-speed tasks 	Find alternatives to compressed air and correct improperly-sized or ill-suited equipment
Underutilization	 Machines idle between batches Equipment powered for partial loads Poor production scheduling 	Avoid erratic scheduling, rush orders, downtime and bottlenecks Review use of existing systems
Traditional lean waste	 Long material transport routes Overprocessing product finishes Scrapping due to unclear specifications 	Reduce scraps, defects, over- processing, unnecessary movement and material handling