#### **JANUARY 11, 2024**

### Investigation Phase Essentials for Existing Building Commissioning (EBCx) Projects Part 1

\*Part 2 scheduled for January 18<sup>th</sup>

Megan Wallace P. Eng., BPA Eddy Cloutier P. Eng., BPA Aurélie Verstraete P.Eng., BPA



# Agenda - Part 1

- Save on Energy program updates
- Planning phase
  - Pre-screening
  - Initial assessment
- Investigation phase
  - Diagnostic monitoring
- Q&A







# Agenda - Part 2 session (January 18<sup>th</sup>)

- Save on Energy program updates
- Investigation phase cont'd
  - Functional testing
  - Document findings
  - Estimate savings and implementation costs
  - Investigation report
  - Implementation methods and hand-off
- Q&A





## Save on Energy Capability Building – EBCx resources

- Designed to enhance knowledge and develop skills in organizations and communities to increase awareness and participation in energy-efficiency opportunities across Ontario, including Save on Energy programs
- Our dedicated EBCx resources include:
  - Webinars (*EBCx in a Nutshell, Key Measures*)
  - practical guide for building owners and managers
  - information sheets: condos, medical buildings, office buildings and warehouses
  - incentives for ~20 training courses



<u>EBCx resources</u> on Save on Energy website



### Save on Energy - EBCx Program

#### HOW DOES THE PROGRAM WORK?

The EBCx program has three phases with incentives for participants who complete each one.

#### 1. INVESTIGATION PHASE

Hire a CP to investigate your facility and prepare a report setting out a commissioning plan.

#### INCENTIVE

Up to \$0.06/sq. ft., up to \$50,000 per facility and/or 75% of the cost of working with a CP

#### 2. IMPLEMENTATION PHASE

Implement the energyefficiency measures identified in the commissioning plan.

#### INCENTIVE

\$0.03/KWh of confirmed energy savings, up to the lesser of 30% of facility annual electricity consumption or \$50,000



Receive training from your CP to maintain savings and monitor your systems for one year after implementation.

#### INCENTIVE

\$0.03/KWh of confirmed persisting energy savings, up to the lesser of 30% of facility annual electricity consumption or \$50,000





### Save on Energy – EBCx Program

#### HOW DOES THE PROGRAM WORK?

The EBCx program has three phases with incentives for participants who complete each one.

#### INVESTIGATION PHASE

Hire a CP to investigate your facility and prepare a report setting out a commissioning plan.

#### INCENTIVE

Up to \$0.06/sq. ft., up to \$50,000 per facility and/or 75% of the cost of working with a CP

#### IMPLEMENTATION PHASE

Implement the energyefficiency measures identified in the commissioning plan.

#### INCENTIVE

\$0.03/KWh of confirmed energy savings, up to the lesser of 30% of facility annual electricity consumption or \$50,000



Receive training from your CP to maintain savings and monitor your systems for one year after implementation.

#### INCENTIVE

\$0.03/KWh of confirmed persisting energy savings, up to the lesser of 30% of facility annual electricity consumption or \$50,000





### Investigation phase

The investigation phase allows the EBCx team to analyze the system operations in detail, carry out diagnostic tests and propose measures to optimize operations. These measures are presented in the Findings Log, an integral part of the Investigation Report.





### Investigation activities

#### Planning/Pre-screening

Select a building
Define EBCx objectives
Define current facility requirements (CFR)
Define scope and roles

Planning/Initial Assessment
Review building documentation
Develop initial EBCx Plan
Analyze energy data
Conduct kick-off meeting
Perform initial walk-through
Conduct staff interviews
Document findings (preliminary)
Meet with owner to focus work for investigation
Update EBCx Plan and scope

#### Investigation and report

Run and analyze trends and monitoring
Conduct further document review/staff interviews/deeper field inspections
Conduct functional testing
Document findings (Findings log)
Estimate savings and implementation costs
Investigation report
Review findings with owner
Select findings to implement
Update EBCx Plan for implementation and hand-off





Reference : BCxA - Existing Building Commissioning Best Practices (bcxa.org)

### Investigation activities – Planning

#### Planning/Pre-screening

Select a building
Define EBCx objectives
Define current facility requirements (CFR)
Define scope and roles

Reference: BCxA - Existing Building Commissioning Best Practices (bcxa.org)



# Select a building

Identify best buildings: criteria to consider?

- □ Engagement and budget from the owner
- □ Engagement from building staff
- Building documentation available
- Building Automation System (BAS) still maintained (not obsolete)?
- BAS documentation and capacities (trending)
- □ Budget for implementation and hand-off
- Realistic schedule (minimum three seasons)

- □ Energy Use Intensity (EUI): energyefficiency potential?
- Building systems and equipment in good condition (no extensive repair needed)
- Building systems and equipment useful life (no major equipment changes)

Financial leverage: Utility incentive programs



## Select a building

#### NRCan EBCx Pre-Screening Tool

#### RCx Screening Form EN.pdf (canada.ca)



|                          | Building Context                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | ENERGY STAR Score or Energy Use Intensity (EUI) Benchmarking         0 pts       Score of 65 or higher, or EUI 15% lower than Industry average         3 pts       Score between 35 and 65, or EUI similar to Industry average (+-15%)         5 pts       Score lower than 35, or EUI 15% higher than Industry average         5 pts       Unexplained increase in energy consumption |
| <b>0</b> 2<br><b>0</b> 2 | Upcoming major retrofit projects<br>0 pts  One planned within the next 2 years<br>3 pts  None planned within the next 2 years<br>5 pts  None expected in the next 5 years                                                                                                                                                                                                              |
| ® 99<br>()<br>()         | Thermal comfort and Indoor Environmental Quality (IEQ)         0 pts       Infrequent occupant complaints about comfort or IEQ         1 pts       Typical "hot and cold" calls         2 pts       Multiple recurrent complaints about comfort or IEQ                                                                                                                                 |
| چې<br>ا                  | Mechanical Equipment Condition                                                                                                                                                                                                                                                                                                                                                         |
| 0<br>04                  | Age of majority of equipment         0 pts       More than 12 years OR less than 3 years of remaining useful life         2 pts       Less than 12 years OR more than 3 years of remaining useful life                                                                                                                                                                                 |
| © 10                     | HVAC Systems Mechanical problem(s)         0 pts       No problem identified         1 pts       Infrequent mechanical problems         2 pts       Recurrent mechanical problems                                                                                                                                                                                                      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                        |



**POWER WHAT'S NEXT** 



11

## Energy use intensity

- EUI calculation (GJ/m<sup>2</sup> or kWh/ft<sup>2</sup>)
- EUI: an indicator for benchmarking
- What affects a building's EUI?
  - Building use/type (hospital versus school)
  - Climate
  - Building age, building size, occupancy rate, others.
  - Mechanical/electricial systems
     efficiency
  - Operational efficiency





# Select a building

#### **Building A**

- Large office building
- Construction year: 1980
- EUI: 1,5 GJ/m<sup>2</sup>/yr
- Boiler plant/chiller plant
- No documentation available
- Building Automation System: old platform, not maintained anymore

#### **Building B**

- Medium school building
- Construction year: 2010
- EUI: 1,1 GJ/m<sup>2</sup>
- Innovative/complex mechanical systems and sequences (geothermal, heat recovery)
- Design and construction documentation available
- BAS and remote access available





### Benchmarking

#### NRCan - Survey of Commercial and Institutional Energy Use (SCIEU) - Buildings 2019

#### Available at:

https://natural-resources.canada.ca/energy-efficiency/energystar-canada/energy-star-for-buildings/energy-benchmarkingtechnical-information/building-energy-use-surveys/19454

| Parlamente estimitere                       | Energy intensity  |
|---------------------------------------------|-------------------|
| Primary activity                            | GJ/m <sup>2</sup> |
| Buildings survey (excluding establishments) |                   |
| Bank branch                                 | 0,95              |
| Public safety – police and fire station     | 0,96              |
| Assisted living facility                    | 1,44              |
| Hotel, motel, hostel, or lodge              | 1,28              |
| Preschool or daycare                        | 0,98              |
| Primary or secondary school                 | 0,91              |
| Restaurant                                  | 2,60              |
| Food or beverage store                      | 1,34              |
| Retail – non-food                           | 1,01              |
| Office space – medical                      | 0,91              |
| Office space – excluding medical            | 1,05              |
| Recreation centre                           | 1,07              |
| Ice rink                                    | 1,15              |
| Place of worship                            | 0,99              |
| Museum or gallery                           | 0,85              |
| Library or archives                         | 1,00              |
| Warehouse                                   | 1,04              |
| Vehicle dealership, repair, or storage      | 1,82              |
| Mixed use <sup>2</sup>                      | 1,36              |
| Others in scope <sup>3</sup>                | 1,16              |
| Sub-total                                   | 1,29              |
|                                             |                   |
| Establishments survey                       |                   |
| University buildings                        | 1,95              |
| Other post-secondary buildings              | 1,91              |
| Hospital buildings                          | 2,67              |
| Sub-total                                   | 2,11              |
|                                             |                   |
| Total                                       | 1,31              |





### Benchmarking

BOMA Canada - National Green Building Report 2021

Available at: <u>https://bomacanada.ca/2021-</u> national-green-building-report/

#### BOMA BEST certified buildings in Ontario :



#### Office Buildings Reduce Energy by 25%

BOMA BEST Office buildings have reduced their energy use by 25% since 2008. They now average 24.7 ekWh/ft<sup>2</sup>/yr. Which is 3% lower compared to the national average<sup>3</sup>. Of this, approximately







## Benchmarking

#### Energy Star Portfolio Manager

| ENERGY STAR®<br>PortfolioManager®                                                                       |                                                                                                             |                              |                                    |                                                                        |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|------------------------------------------------------------------------|
| MyPortfolio Sharir                                                                                      | ng Report                                                                                                   | ing Re                       | cognition                          |                                                                        |
| Source EUI Trend (kBtwft*) Change Matric                                                                | Metrics Summary                                                                                             |                              | Change<br>Change                   | e Metrics.<br>e Time Pori                                              |
| 200                                                                                                     | Metric                                                                                                      | Baseline)                    | Current)                           | Change                                                                 |
| 100                                                                                                     | ENERGY STAR Score (1-100)                                                                                   | 61                           | 65                                 | 4.00 (6.60                                                             |
| 1995                                                                                                    | Source EUI (kBtu/ft <sup>a</sup> )                                                                          | 142.0                        | 132.9                              | (-6.40%)                                                               |
|                                                                                                         | Site EUI (kBturft*)                                                                                         | 62.0                         | 55.4                               |                                                                        |
| 0                                                                                                       |                                                                                                             |                              |                                    | -6.60<br>(-10.60%                                                      |
| 0 2008 2010 2012 2014 2016 2018                                                                         | Energy Cost (\$)                                                                                            | 561,340.17                   | 545,357.04                         | -6.60<br>(-10.60%<br>-12953.1<br>(-2.30%)                              |
| 0<br>2008 2010 2012 2014 2016 2018<br>(Chart current as of 05/29/2019<br>Refresh Chart<br>10.43 AM EDT) | Energy Cost (\$)<br>Total GHG Emissions Intensity<br>(kgCO2ertP)                                            | 561,340.17<br>5.7            | 548,387.04                         | -6.60<br>(-10.60%<br>-12953.1<br>(-2.30%<br>-0.40<br>(-7.00%           |
| 0 2008 2010 2012 2014 2016 2015<br>(Chart current as of 05/29/2019 Refresh Chart<br>10.43 AM EDT)       | Energy Cost (\$)<br>Total GHG Emissions Intensity<br>(kgCO2erft)<br>Water Use (All Water Sources)<br>(kgal) | 561,340.17<br>5.7<br>3,450.7 | 548.387.04<br>5.3<br>Not Available | -6.60<br>(-10.60%<br>-12953.1:<br>(-2.30%)<br>-0.40<br>(-7.00%)<br>N/A |

| ence<br>ERGY STAR score(1-100)<br>arce EU(Jøbburff)<br>EU(Jøbburff)<br>ance Energy Use(Jøbbu)<br>Energy Use(Jøbbu)<br>arg Coe(Jø)<br>( Rocetion-Bared) (DHG)<br>arksom/Jøbelte Toos CO2e)    | 311 31 2015           (Energy Baseline)           76           156 6           55.9           33730144.0           11832194.3           366610.30           1357.1 | Feb 28/29 2023<br>(Energy Current)<br>57<br>101.7<br>36.3<br>21506233.8<br>7680797.8<br>1151 Arailatos | Target*<br>64<br>148.8<br>53.1<br>31473636.8<br>11240504.6<br>350179.79                                                                                                                     | Median<br>Property*<br>50<br>178.4<br>63.7<br>37732262.5<br>13475809.3<br>13475809.3<br>13475809.3                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERGY STAR score(1-140)<br>arcs EU(bBlauff)<br>IEU(bBlauff)<br>arcs Energy Use(bBla)<br>IEBergy Use(bBla)<br>IEBergy Use(bBla)<br>IEBergy Use(bBla)<br>IEBergy Use(bBla)<br>IEBergy Use(bBla) | 76<br>156.6<br>55.9<br>33730144.0<br>11832194.3<br>368610.30                                                                                                       | 87<br>101.7<br>36.3<br>21596233.8<br>7680797.8<br>Not Availatin                                        | 64<br>148.8<br>53.1<br>31473636.8<br>11240504.6<br>350179.79                                                                                                                                | 50<br>178.4<br>63.7<br>37732262 5<br>13475609 3<br>13475609 3<br>1001<br>Arratiator                                                                                                                                                |
| urce EUI(ABluith)<br>= EUI(ABluith)<br>ace Energy Use(ABlu)<br>= Energy Use(ABlu)<br>= Energy Use(ABlu)<br>angy Cost(\$)<br>= ( Location Based) (CHG<br>= sister)(Metric Tose CO2e)          | 156.6<br>55.9<br>33130144.0<br>11832194.3<br>368610.30                                                                                                             | 101.7<br>36.3<br>21506233.8<br>7660797.8<br>Mot Annihatin                                              | 148.8<br>53.1<br>31473636.8<br>11240584.8<br>350179.79                                                                                                                                      | 178.4<br>63.7<br>37732262 5<br>13475809 7<br>800<br>Availates                                                                                                                                                                      |
| EUR/kBhañ*)<br>ace Energy Use(kBha)<br>e Energy Use(kBha)<br>mgy Cost(\$)<br>el (Location-Based) GHG<br>issions(Metric Tons CO2e)                                                            | 55.9<br>33130144.0<br>11832184.3<br>368610.30                                                                                                                      | 36.3<br>21506233.8<br>7680797.8<br><u>HistArailatia</u>                                                | 53.1<br>31473636.8<br>11240584.6<br>350179.79                                                                                                                                               | 63.7<br>37732262.5<br>13475809.7<br>Biol<br>Availation                                                                                                                                                                             |
| ence Energy Use(KBtu)<br>Energy Use(KBtu)<br>Ingy Csel(\$)<br># (Location-Based) GHG<br>Issions(Metric Tons CO2e)                                                                            | 33130144.0<br>11832194.3<br>368610.30                                                                                                                              | 21506233.8<br>7680797.8<br>Not.Available                                                               | 31473636.8<br>11240584.6<br>350179.79                                                                                                                                                       | 37732262 5<br>13475809 7<br>Etol<br>Availation                                                                                                                                                                                     |
| Energy Use(kBtu)<br>Irgy Cost(\$)<br>VI (Location-Biased) GHG<br>Issions(Metric Tons CO2e)                                                                                                   | 11832194.3<br>368610.30                                                                                                                                            | 7680797.8<br>Hist.Arailatte                                                                            | 11240584.6<br>350179.79                                                                                                                                                                     | 13475809.3<br>Bol<br>Aradiatos                                                                                                                                                                                                     |
| rrgy Coel(S)<br># (Location-Based) GHG<br>Issions(Metric Tons CO2e)                                                                                                                          | 368610.30                                                                                                                                                          | tist.exaliatin                                                                                         | 350179.79                                                                                                                                                                                   | Bol<br>Available                                                                                                                                                                                                                   |
| el (Location-Based) GHG<br>Issions(Metric Toes CO2e)                                                                                                                                         | 1357.1                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                    |
|                                                                                                                                                                                              |                                                                                                                                                                    | 639.5                                                                                                  | 1289.2                                                                                                                                                                                      | 1121.9                                                                                                                                                                                                                             |
| * To compute the metrics at the target and median levels of performance, we will use the fuel mix associated with your property's current energy use.                                        |                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                    |
| 3aselines & Targets                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                    |
|                                                                                                                                                                                              | Baselines                                                                                                                                                          | Target                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                    |
| Energy                                                                                                                                                                                       | 07/31/2015                                                                                                                                                         | 5%                                                                                                     |                                                                                                                                                                                             | -                                                                                                                                                                                                                                  |
| Water 07/31/2008                                                                                                                                                                             |                                                                                                                                                                    | Not Ava                                                                                                | ailable                                                                                                                                                                                     |                                                                                                                                                                                                                                    |
| Waste/Materials                                                                                                                                                                              | 12/31/2012                                                                                                                                                         | Not Ava                                                                                                | ailable                                                                                                                                                                                     |                                                                                                                                                                                                                                    |
|                                                                                                                                                                                              | Saselines & Targets<br>Energy<br>Water<br>Waste/Materials                                                                                                          | Baselines & Targets Baselines & Targets Energy 07/31/2015 Water 07/31/2018 WasteMaterials 12/31/2012   | Saselines & Targets           Baselines         Target           Energy         07/31/2015         5%           Water         07/31/2008         Not Ann Ann Ann Ann Ann Ann Ann Ann Ann An | Saselines & Targets           Baselines         Target           Energy         07/31/2015         5%           Water         07/31/2008         Not Available           Waster/Materials         12/31/2012         Not Available |





## **EBCx** objectives

EBCx projects should focus on one or two primary objectives:

- Resolve O&M issues
- Enhance energy efficiency/reduce environmental footprint
- Reduce operation and energy costs (energy use and demand)
- Improve comfort/indoor environmental quality
- Improve systems performance and control
- Improve O&M staff training and building documentation
- Identify possible capital projects for further investigation



# Current facility requirements (CFR)

Review and update CFR to reflect actual requirements.

For each space use :

- Space conditions (temperature, humidity)
- Operating/occupancy hours
- Filtration
- Ventilation/outside air fractions
- Etc.

#### APPENDIX B - OWNER'S OPERATING REQUIREMENTS – TEMPLATE

| Requirement                                                      | Typical for<br>Building | Offices | Lobby | Conference<br>Rooms | Computer<br>or Data<br>Storage | Other | Notes |
|------------------------------------------------------------------|-------------------------|---------|-------|---------------------|--------------------------------|-------|-------|
| Temperature require-<br>ments for cooling and<br>heating seasons |                         |         |       |                     |                                |       |       |
| Humidity requirements                                            |                         |         |       |                     |                                |       |       |
| Dehumidification requirements                                    |                         |         |       |                     |                                |       |       |
| Pressure relationship requirements                               |                         |         |       |                     |                                |       |       |
| Filtration requirements                                          |                         |         |       |                     |                                |       |       |
| Ventilation requirements                                         |                         |         |       |                     |                                |       |       |
| Air change requirements                                          |                         |         |       |                     |                                |       |       |
| Sound and noise level requirements                               |                         |         |       |                     |                                |       |       |
| Normal operating schedule for occupancy                          |                         |         |       |                     |                                |       |       |
| Weekend schedule                                                 |                         |         |       |                     |                                |       |       |
| Holiday schedule                                                 |                         |         |       |                     |                                |       |       |

Reference: NRCan CanmetENERGY – Recommissioning Guide For Building Owners and Managers. Available at: <u>https://natural-</u> resources.canada.ca/sites/nrcan/files/canmetenergy/pdf/fichier.

php/codectec/En/2008-167/NRCan\_RCx\_Guide.pdf





### Project scope

Systems, operations and assemblies covered by investigation:

- ✓ Chiller plant/heating plant
- ✓ Domestic hot water
- ✓ Ventilation systems, exhaust systems
- ✓ Variable Air Volume (VAV) boxes, perimeter heating
- ✓ Lighting controls
- ✓ Other mechanical systems (heat pump, pumps, etc.)
- Building automation system (sequences of operation, setpoints, schedules, graphics, valves, sensors, motorized dampers, alarms, etc.)

Usually excluded from scope: plumbing systems (non-energy systems), fire protection, elevators, sanitary pump, chemical water treatment, etc.



## Project scope

With certain considerations :

- Equipment and system complexity
- Building size
- Future renovations in specific areas
- Systems at the end of their useful life
- Known O&M issues
- Limited budget/schedule

... Project scope could also:

- Focus on certain spaces, issues, systems or equipment (chiller plant, for example)
- Select major systems (major ventilation systems)
- Use sampling methods for repetitive systems (VAV boxes)
- Exclude some systems or areas (if short-term renovations/system replacement are scheduled)



20

During Planning/Investigation :

- **Cx Provider**: lead EBCx process, identify measures and perform tests
- **Owner**: define objectives and scope, support EBCx process (information, resources)

| Cx Provider Responsibilities                                                                                                                                                                                                                                                        | Owner Activities                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Planning Phase                                                                                                                                                                                                                                                                      |                                                                                                    |
| Meet with Owner to define project<br>Update the Current Facility Requirements (CFR)                                                                                                                                                                                                 | Hire CxP to help update the CFR<br>Contribute, review, & approve the CFR<br>Develop initial budget |
| DELIVER TO OWNER: Updated CFR                                                                                                                                                                                                                                                       |                                                                                                    |
| Initial Assessment Phase                                                                                                                                                                                                                                                            |                                                                                                    |
| Review building documentation                                                                                                                                                                                                                                                       | Approve EBCx budget                                                                                |
| Develop initial EBCx Plan<br>Analyze energy data<br>Perform initial walk-through<br>Conduct staff interviews<br>Document findings<br>Meet with Owner to focus work for investigation<br>DELIVER TO OWNER: Initial EBCx Plan & Scope                                                 | Review & approve EBCx Plan & scope                                                                 |
| Investigation Phase                                                                                                                                                                                                                                                                 |                                                                                                    |
| Run & analyze trends & monitoring<br>Conduct deeper field inspections<br>Conduct functional testing<br>Document findings<br>Estimate savings & implementation costs<br>Review findings with Owner, select findings to<br>implement<br>Update EBCx Plan for implementation & handoff | Attend commissioning meetings<br>Coordinate O&M staff involvement<br>Manage occupant impact/issues |

Reference: BCxA - Existing Building Commissioning Best Practices (bcxa.org)





During Implementation/Hand-Off

- Cx Provider
- Owner

| Cx Provider Responsibilities                         | Owner Activities                               |  |  |
|------------------------------------------------------|------------------------------------------------|--|--|
| Implementation Phase                                 |                                                |  |  |
| Complete additional investigation & engineering      | Review and/or approve energy savings estimates |  |  |
| Engage subcontractors, as needed                     |                                                |  |  |
| Implement selected findings                          |                                                |  |  |
| Verify performance of ECMs & FIMs                    |                                                |  |  |
| Adjust energy savings estimates & costs              |                                                |  |  |
| DELIVER TO OWNER: Adjusted Cost & Savings Estimates  |                                                |  |  |
| Hand-Off Phase                                       |                                                |  |  |
| Facilitate training of building staff                | Support facility staff training                |  |  |
| Update sequences of operation                        | Support OCx Plan execution                     |  |  |
| Update Systems Manual                                |                                                |  |  |
| Update preventive maintenance procedures             |                                                |  |  |
| Implement performance tracking                       |                                                |  |  |
| Develop ongoing commissioning (OCx)                  |                                                |  |  |
| recommendations                                      |                                                |  |  |
| DELIVER TO OWNER: Updated Facility Guide, Final Cx R | eport, OCx recommendations                     |  |  |



### Facility staff:

- Gather existing documentation
- Prepare a list of known problems/opportunities
- Calibrate sensors and actuators (prior to investigation if possible)
- Perform needed deferred maintenance before EBCx begins
- Help Cx Provider to understand systems operation
- Collaborate with Cx Provider to perform tests
- Perform simple repairs and improvements



#### **Contractor or manufacturer representatives** (as needed):

- Involvement during investigation and/or implementation
- Controls contractor (sensor calibration, controls measures implementation, etc.)
- Testing and balancing specialist
- Service contractor for specific equipment (chillers, boilers)



### **Investigation activities – Planning**

Planning/Pre-screening

Select a building
Define EBCx objectives
Define current facility requirements (CFR)
Define scope and roles

Planning/Initial Assessment
Review building documentation
Develop initial EBCx Plan
Analyze energy data
Conduct kick-off meeting
Perform initial walk-through
Conduct staff interviews
Document findings (preliminary)
Meet with owner to focus work for investigation
Update EBCx Plan and scope

Reference: BCxA - Existing Building Commissioning Best Practices (bcxa.org)



## Building documentation

Facility staff or owner should gather existing documentation prior to the site visit:

- Original design documentation
- Equipment lists (nameplate)
- Shop drawings (chillers, boilers, air handling unit AHU, pumps, etc.)
- Drawings (controls, mechanical)
- Control system documentation (controls diagrams, sequences of operation)
- TAB (testing, adjusting and balancing) reports
- Previous energy studies



## Initial EBCx plan – Table of contents

- 1. Summary building and systems description
- 2. Scope (systems covered by EBCx investigation)
- 3. Preliminary energy analysis
- 4. Investigation methodology
- 5. EBCx team (internal and external)
- 6. Work schedule
- 7. Deliverables
- 8. Documentation review

Appendices: Current facility requirements, Diagnostic monitoring plan, etc.



### EBCx plan example 1

#### Summary systems description

coils and perimeter convectors. It is mainly located at the penthouse's mechanical room (10<sup>th</sup> floor). It is composed of three (3) natural gas fired boilers. Boiler no. 1 has been decommissioned.

| HOT WATER BOILERS    |             |             |             |  |  |
|----------------------|-------------|-------------|-------------|--|--|
| System tag           | B-1         | B-2         | B-3         |  |  |
| Brand                |             |             |             |  |  |
| Model no.            |             |             |             |  |  |
| Capacity input (MBH) | 3,000 MBH   | 3,000 MBH   | 3,000 MBH   |  |  |
| Energy source        | Natural gas | Natural gas | Natural gas |  |  |

- 3.1.2 Primary pumps are serving boilers and secondary pumps are constant speed pumps.
- 3.1.3 Two (2) heat exchangers transfer heat from hot water to glycol. Glycol pumps (constant speed) supply heat to air handling units AHU-7, AHU8 and AHU-9.
- 3.2 Cooling:
  - 3.2.1 Cooling for the building is provided by a central chiller plant with four chillers, one cooling tower, and one dry-cooler, supplying chilled water to air handling units and fan coils. Chiller plant is located at the penthouse's mechanical room (10<sup>th</sup> floor).

| CHILLERS   |                       |      |             |  |
|------------|-----------------------|------|-------------|--|
| System tag | CH-1 (decommissioned) | CH-2 | CH-3 / CH-4 |  |
| Brand      |                       |      |             |  |
| Model no.  |                       |      |             |  |

#### **Preliminary energy analysis**

#### 1 5 4 <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup> <sup>+</sup>

#### Table 3: Natural gas - Consumption, cost and GHG emissions

| Year | Consumption<br>(m <sup>3</sup> ) | Consumption<br>(GJ) | Energy Cost<br>(\$) | Energy Cost<br>(\$/GJ) | GHG emissions<br>(tons CO <sub>2</sub> eq) |
|------|----------------------------------|---------------------|---------------------|------------------------|--------------------------------------------|
| 2018 | 196,952                          | 7,535               | \$ 52,924           | \$ 7.02                | 374                                        |
| 2019 | 214,778                          | 8,217               | \$ 56,353           | \$ 6.86                | 408                                        |
| 2020 | 185,612                          | 7,102               | \$ 48,489           | \$ 6.83                | 352                                        |



#### Table 4: Electricity and Natural gas - Consumption, cost and GHG emissions

|   | Vera | Consumption | Energy Cost | GHG emissions             |
|---|------|-------------|-------------|---------------------------|
| ļ | rear | (GJ)        | (\$)        | (tons CO <sub>2</sub> eq) |



## EBCx plan example 2

### **Roles and Responsibilities**

| Distribution of tasks                   |                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name/Function                           | Responsibilities                                                                                                                                                                                                                                                                                         |  |  |  |
| RCx Agent<br>Assistant to the RCx Agent | Execute the tasks of the recommissioning process (planning,<br>investigation and analysis, functional testing, identification of<br>measures, energy savings calculations, etc.).<br>Write the recommissioning plan which includes a measurement<br>plan, the investigation report and the final report. |  |  |  |
|                                         | Guide the owner with the choices of measures to be implemented.                                                                                                                                                                                                                                          |  |  |  |
| Energy specialist                       | Organize and conduct progress meetings, promote collaboration<br>between the agent and the staff in the building, provide and<br>facilitate access to documentation, and ultimately make decisions<br>regarding the measures to be implemented.                                                          |  |  |  |
| Energy specialist                       | Provide the building energy consumption data to the RCx agent.                                                                                                                                                                                                                                           |  |  |  |
| Construction supervisor                 | Responsible for access to the building. Help coordinate access to the critical areas.                                                                                                                                                                                                                    |  |  |  |
| Operations Supervisor                   | Provide information to the RCx agent about the operation of the building.                                                                                                                                                                                                                                |  |  |  |

#### Scope

| LIST OF SYSTEMS COVERED BY THE RCX |                                  |                                       |  |  |  |
|------------------------------------|----------------------------------|---------------------------------------|--|--|--|
| System No                          | Technical informations           | Sectors served                        |  |  |  |
| AHU 1                              | H Type, VAV, 3 955 L/S*, cooled, | All the buildings                     |  |  |  |
| Basement ventilation system        | heated and humidified            | All the buildings                     |  |  |  |
| Exhaust VE1, VE2 and VE3           | 900 L/S*                         | Washrooms, janitor, shower            |  |  |  |
| HX-1, HX2 and dedicated pumps      | 1474 Lb/hr                       | Perimeter heat water network and AHUs |  |  |  |
| Chiller                            | 25 tons                          | AHU1                                  |  |  |  |
| IT room DX systems                 | 2 x 5 tons air cooled            | IT room                               |  |  |  |

Legend: VAV = Variable air volume, \* = Estimated flow

- 6.2 Investigation of other mechanical systems:
  - 6.2.1 The control systems of approximately 15% of the spaces will be studied and documented. This will be sufficient to determine how the sequences function.
  - 6.2.2 The production and general efficiency of the domestic hot water supply system.
  - 6.2.3 Indoor and outdoor lighting controls.





29

## EBCx plan example 3

### **Diagnostic Monitoring Plan**

11.1.8 The following is the "RCX Measuring Table" related to the BAS points to be logged

| Main Building RCx Measuring Table – BAS points to be logged |                               |                  |      |                       |
|-------------------------------------------------------------|-------------------------------|------------------|------|-----------------------|
| Technician                                                  |                               |                  |      |                       |
| Date                                                        |                               |                  |      |                       |
|                                                             | Duration of<br>log activation | Time<br>Interval | Done | Date of<br>activation |
| AHU3A Servery Kitchen                                       |                               |                  |      |                       |
| Supply fan status                                           | 14 days                       | 30 min.          |      |                       |
| Exhaust fan status 3E                                       | 14 days                       | 30 min.          |      |                       |
| AHU01 Tent room                                             |                               |                  |      |                       |
| Supply fan status                                           | 14 days                       | 30 min.          |      |                       |
| Return fan status                                           | 14 days                       | 30 min.          |      |                       |
| Supply air temperature                                      | 7 days                        | 15 min.          |      |                       |
| Mixed air temperature                                       | 7 days                        | 15 min.          |      |                       |
| AHU08a Long Gallery                                         |                               |                  |      |                       |
| Room air temperature                                        | 7 days                        | 15 min.          |      |                       |
| Supply air temperature                                      | 7 days                        | 15 min.          |      |                       |
| Supply fan status                                           | 14 days                       | 30 min.          |      |                       |
| AHU09a Reception room                                       |                               |                  |      |                       |
| Room air temperature                                        | 7 days                        | 15 min.          |      |                       |
| Supply air temperature                                      | 7 days                        | 15 min.          |      |                       |
| Mixed air temperature                                       | 7 days                        | 15 min.          |      |                       |
|                                                             | 1                             |                  |      |                       |



### Work schedule example

|        | ACTIVITIES                             | JAN | FEB | MARCH | APRIL | MAY | JUNE | JULY | AUG |
|--------|----------------------------------------|-----|-----|-------|-------|-----|------|------|-----|
| DNINN  | Documentation review                   |     |     |       |       |     |      |      |     |
|        | Initial site visit                     |     |     |       |       |     |      |      |     |
|        | Set up remote access to BAS            |     |     |       |       |     |      |      |     |
|        | Financial incentives application       |     |     |       |       |     |      |      |     |
| 2      | Create EBCx Plan                       |     |     |       |       |     |      |      |     |
| ш.     | Kick-off meeting                       |     |     |       |       |     |      |      |     |
|        | EBCx Investigation - winter            |     |     |       |       |     |      |      |     |
|        | Boiler plant functionnal testing       |     |     |       |       |     |      |      |     |
|        | AHU - winter operation                 |     |     |       |       |     |      |      |     |
|        | Perimeter heating                      |     |     |       |       |     |      |      |     |
| SATION | Others                                 |     |     |       |       |     |      |      |     |
|        | Document findings                      |     |     |       |       |     |      |      |     |
|        | EBCx Investigation - mid season        |     |     |       |       |     |      |      |     |
|        | Chiller plant / Boiler plant operation |     |     |       |       |     |      |      |     |
|        | AHU - mid-season operation             |     |     |       |       |     |      |      |     |
| Ĕ      | Others                                 |     |     |       |       |     |      |      |     |
| N.     | Document findings                      |     |     |       |       |     |      |      |     |
| Ξ      | EBCx Investigation - summer            |     |     |       |       |     |      |      |     |
| E      | Chiller plant functionnal testing      |     |     |       |       |     |      |      |     |
|        | AHU - summer operation                 |     |     |       |       |     |      |      |     |
|        | Others                                 |     |     |       |       |     |      |      |     |
|        | Document findings                      |     |     |       |       |     |      |      |     |
|        | Investigation report                   |     |     |       |       |     |      |      |     |
|        | Meeting with Owner                     |     |     |       |       |     |      |      |     |
|        | Financial Incentive - Follow up        |     |     |       |       |     |      |      |     |





## Analyze energy data

Minimum input: 36 months of historical consumption (utility bills, all energy sources).

# Is there a rising trend over recent years?

- Climate conditions (cooling/heating degree days used for normalization)
- Occupancy rate
- Renovation/expansion
- Change in space use or operating hours

Total energy consumption (GJ)





## Analyze energy data (cont'd)

- Choose a baseline year (for future energy savings calculations)
- Perform an energy inventory: heating, cooling, fans, lighting, etc.
- Analyze demand data and peak demand





## Initial site walk-through

- Walk-through of tenant floors
- Walk-through of all major mechanical rooms (central plant, major AHU)
- General condition of equipment
- BAS review (graphics, trending and archiving capacities, sequences of operation)
- Calibration and maintenance required prior to investigation?



## Facility staff interview

Document known operational issues and improvement opportunities

- **General building use**: changes in space use, occupied hours, etc.
- Mechanical/electrical equipment and materials condition
  - Equipment inoperable/deficient/repair required? Capacity issues?
  - Materials require repair (piping, ductwork, valves, etc.)?
- Mechanical equipment control
  - BAS: adequate control/monitoring? Terminal system control? Space temperature control?
- Lighting control satisfactory?
- Planned replacement or renovations?





# Building occupant interview (if applicable)

Consider involving occupants when EBCx objectives include thermal comfort

- General building use
  - Spaces changed purpose?
- Thermal comfort (winter/summer)
  - Areas/times of day space temperature controls do not work well?
- Indoor air quality
  - Areas where indoor air quality is poor?
- Lighting
  - Areas where increased control should be considered?

| Interviewees A - GENERAL BUILDING USE What is the see of the building?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Building                                                                                            |                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A - GENERAL BUILDING USE  What is the use of the building of Building users, original building use. By coupled hours Functional text discussion  B - THERMAL COMFORT  Is the building thermally constructed in Summer? Is indice temperature contribution? Is the summer? Is indice temperature contribution? Is the same text from the space temperature controls alone adjustment? Are there sufficient cont<br>print? Ut areas tents from space temperature controls and well.                                                                                                                                                                                                                                                                                                    | Interviewees                                                                                        |                                                                                                                                                                                                                                                                |
| But is the use of the toolding?     Budding uses.     Spaces changed purpose?     Spaces was notified budding use.     Spaces changed purpose?     Occupied hours.     Functional test discussion      B - THERMAL COMFORT      Is the building flammally conductable in Summar?     Is the building flammally conductable in Summar?     Is the building flammally conductable in Summar?     Is the subliding flammally conductable in Summar? | A - GENERAL                                                                                         | BUILDING USE                                                                                                                                                                                                                                                   |
| B – THERMAL COMFORT<br>Is the building themaily contortable in Summer?<br>Is index temperature confortable? Do the building controls allow adjustment? Are there sufficient cost<br>print?<br>• Ust areas there the space temperature controls work well.<br>• Ust areas (and times of day) where space temperature controls do not work well.                                                                                                                                                                                                                                                                                                                                                                                                                                       | What is the use<br>Building of<br>Spaces of<br>Occupied<br>Functions                                | of the building?<br>service original building une.<br>Langed purgone?<br>hauns.<br>fand discussion.                                                                                                                                                            |
| In index temperature confortable? Do the building controls allow adjustment? Are there sufficient cont<br>point?<br>• Ust areas where the space temperature controls work well.<br>• Ust areas (and times of day) where space temperature controls do not work well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B - THERMAL                                                                                         | COMFORT                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B - THERMAL<br>Is the building it<br>index tempera<br>points?<br>• Ust areas<br>• Ust areas         | COMFORT<br>emaily confortable is Seamen?<br>Use confortable? Do the building controls allow adjustment? Are there sufficient cont<br>when the space temperature controls work well.<br>(and times of day) where space temperature controls do not work well.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B - THERMAL<br>is the building th<br>is indoor temperature<br>points?<br>• Ust areas<br>• Ust areas | COMFORT<br>wmailly contortable to Summer?<br>the confortable? On the building controls allow adjustment? Are there sufficient cont<br>where the space temperature controls work well.<br>(and times of day) where space temperature controls do not work well. |



### Investigation activities – Investigation and report

#### Planning/Pre-screening

Select a building
Define EBCx objectives
Define current facility requirements (CFR)
Define scope and roles

Planning/Initial Assessment
Review building documentation
Develop initial EBCx Plan
Analyze energy data
Conduct kick-off meeting
Perform initial walk-through
Conduct staff interviews
Document findings (preliminary)
Meet with owner to focus work for investigation
Update EBCx Plan and scope

#### Investigation and report

Run and analyze trends and monitoring
Conduct further document review/staff interviews/deeper field inspections
Conduct functional testing
Document findings (Findings log)
Estimate savings and implementation costs
Investigation report
Review findings with owner
Select findings to implement
Update EBCx Plan for implementation and hand-off





Reference: BCxA - Existing Building Commissioning Best Practices (bcxa.org)

## Investigation methodology

- Additional documentation review/staff interview
- Deeper on-site inspections/night walk
- Diagnostic monitoring
  - Run and analyze trends and monitoring to identify operational issues and opportunities
- Functional testing
  - Perform system testing to confirm actual operation and identify improvements



### Diagnostic monitoring plan

- General objective: Capture system performance under various conditions using BAS and/or data loggers to identify EBCx opportunities
- Guide for in-house deployment or controls contractor

#### Building operator or controls company + EBCx agent Diagnostic monitoring -BAS

 Option : creating remote access to the building automation system (BAS) for the EBCx agent Implementation of trend curves previously identified in the building automation system

#### EBCx agent

#### Diagnostic monitoring -Portable data loggers • Installation / configuration of data loggers when required

#### EBCx agent + contractors

Other measurements • By electrical / water and air balancing contractors / company able to validate combustion efficiency or other if applicable (the EBCx agent should define all operating modes in which the measurements should be taken, and be present during measurements).



## Diagnostic monitoring plan cont'd

Which metrics should be included in the monitoring plan?

- Energy consumption (meters and sub-meters)
- Operating parameters
  - Air/water temperature, air flow/water flow rates, static pressure
  - Setpoints that changes, command, status, valve/damper modulation
  - Amperage, rotation speed for pumps/fans, etc.
- Outdoor conditions (temperature, humidity)
- Indoor conditions (temperature, humidity, CO<sub>2</sub> level)



# Diagnostic monitoring plan cont'd

### What information should be included?

- Objective of data recording
- Sequence to be verified
- Points to be recorded
- Trend length and data interval required
- For portable data loggers:
- Name of the person in charge
- Equipment info
- Data logger location, start/end dates, and status



## Diagnostic monitoring plan example 1

#### **Purpose:**

Review AHU-1 operation.

#### Sequence to be verified:

Heating valve modulate to reach discharge air temperature setpoint. Heating valve is closed when AHU is OFF.

Setpoint is reset from 15°C to 21°C depending on outdoor conditions.

| Point description                               | Point tag   | Units  | Frequency       |
|-------------------------------------------------|-------------|--------|-----------------|
| Discharge air temperature setpoint              | DAT_AHU1_SP | °C     | 5 min           |
| Mixing air temperature<br>(before heating coil) | MAT_AHU1    | °C     | 5 min           |
| Discharge air temperature value                 | DAT_AHU1    | °C     | 5 min           |
| Heating valve modulation                        | MOD_HV      | %      | 5 min           |
| Fan status                                      | AHU1_STATUS | ON/OFF | Change of value |





### Diagnostic monitoring plan example 2

| System or equipment                  | BAS points                                                                                                                               | Trend length / interval                                                          | Objectives                                                                                                                                                                                                                                                                 |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boilers 01-CBT-CH1 et 01-<br>CBT-CH2 | Points to trend :<br>T outdoor<br>T hot water return<br>Start-stop CH1<br>Start-stop CH2<br>T out CH1<br>T out CH2<br>T supply hot water | 1 week<br>15 minutes interval, except for start-stop<br>(COV – change of value). | Validate network temperatures are maintained. Validate compliance<br>with design and/or modulation requirements as a function of outdoor<br>temperature.<br>Validate the operating stability of supplied temperatures.<br>Validate that the boilers are not short-cycling. |
|                                      |                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                            |



## Diagnostic monitoring with BAS

- Verify indoor conditions (15 min sampling frequency)
- Verify heating valve modulation and PID control loop (1- or 2-minute sampling frequency)

# With a 15-minute interval you will miss the peak!





## Diagnostic monitoring with portable data loggers

- Lux meter
- Pressure meter
- Digital thermometer
- Infrared gun
- Infrared camera
- Indoor air quality meter





45

## Diagnostic monitoring with portable data loggers

Other measurements (usually done by third party/authorized personnel)

- Electrical measurements
- Liquid flow (ultrasonic flowmeter)
- Air flow (balometer)
- Combustion efficiency testing for boilers





### Discussion



## Save on Energy resources

Questions: trainingandsupport@ieso.ca

Calendar of live training events: <u>https://saveonenergytraining.ca/</u>

Information, events, courses: <u>https://saveonenergy.ca/For-Business-and-</u>

Industry/Training-and-support

Save on Energy EBCx program: <u>https://saveonenergy.ca/For-Business-and-</u>

Industry/Programs-and-incentives/Existing-Building-Commissioning-Program



## Thank you!



Stay in the know



#### trainingandsupport@ieso.ca

- @SaveOnEnergyOnt
- f
- facebook.com/SaveOnEnergyOntario



